MATH SOLVE

2 months ago

Q:
# ∠LMN and ∠NMO are a linear pair of angles. If ∠LMN = 4x + 3 and ∠NMO = 10x – 5, then find the value of x. (1 point) x = 10 x = 12 x = 14 x = 13

Accepted Solution

A:

Answer: x = 13

Step-by-step explanation:Given: ∠LMN and ∠NMO are a linear pair of angles. We know that linear pair of angles are supplementary.Then ∠LMN + ∠NMO=180° If ∠LMN = [tex]4x+3[/tex] and ∠NMO = [tex]10x-5[/tex],[tex]\Rightarrow4x+3+10x-5=180[/tex][tex]\Rightarrow14x-2=180\\\Rightarrow14x=180+2\\\Rightarrow14x=182\\\Rightarrow\ x=\frac{182}{14}\\\Rightarrow\ x=13[/tex]Hence, the value of x=13 .

Step-by-step explanation:Given: ∠LMN and ∠NMO are a linear pair of angles. We know that linear pair of angles are supplementary.Then ∠LMN + ∠NMO=180° If ∠LMN = [tex]4x+3[/tex] and ∠NMO = [tex]10x-5[/tex],[tex]\Rightarrow4x+3+10x-5=180[/tex][tex]\Rightarrow14x-2=180\\\Rightarrow14x=180+2\\\Rightarrow14x=182\\\Rightarrow\ x=\frac{182}{14}\\\Rightarrow\ x=13[/tex]Hence, the value of x=13 .